鉄筋入りコンクリート充填鋼管(CFT-R)造の開発

Development of Concrete Filled Steel Tube with Reinforcement

片岡 隆広*1	西内 晃二*1	田辺 太一*2
Takahiro Kataoka	Koji Nishiuchi	Taichi Tanabe
藤井 睦*3	上田 弘樹*1	黒木 安男*1
Atsushi Fujii	Hiroki Ueda	Yasuo Kuroki

要旨

CFT 造に鉄筋を挿入した CFT-R 造について、住友金属工業㈱と共同開発を行い、CFT 造で培った技術の高度化を目指 してきた。今般、「CFT 造および CFT-R 造の設計・施工指針(以下、本指針)」を当社独自に策定し、2008 年 9 月に㈱都 市居住評価センターの一般評定(UHEC 評定-構 20002)を取得した。本報告では、CFT-R 造の構法概要、本指針の特色、 4 種類の構造実験(①柱の軸力・曲げせん断実験、②柱梁接合部のせん断実験、③架構実験、④柱の押し抜き実験)に ついて述べる。構造実験では、本指針設計式により実験値を安全側に評価できることを確認した。 *キーワード: CFT-R 造 柱の曲げ耐力・変形性能 パネル部せん断耐力 鋼管とコンクリートの付着耐力*

1. はじめに

コンクリート充填鋼管(以下、CFT)造に関して、当社 は㈱住友金属工業と共同で他社に先駆けて技術開発を行い、 適用実績を積み重ねてきた^{5~6)}。そして、1997年よりCFT 造に鉄筋を挿入したCFT-R造の共同開発に着手し、CFT造 で培ってきた技術のさらなる高度化を目指してきた。今般、 構造実験を行い、独自性の高い「CFT造およびCFT-R造の 設計・施工指針(以下、本指針)」を策定し、2008年9月 に㈱都市居住評価センターの一般評定を取得した。

本報告では、CFT-R 造の特長、本指針の特色、一般評定 取得に先立ち実施した構造実験について述べる。

2. 構法概要

2.1 CFT-R 造の特長

CFT-R 造は、一般の CFT 造の特長を継承しつつ、以下の 特長を有している。

 高いコストパフォーマンス
 CFT 造に比べて、構造性能を低下させることなく、鋼管厚を低減することができる。その結果、鉄筋工事の 増加を考慮しても、建設コストを縮減できる。また、 鋼管厚を統一することによる経済性・施工性の向上も 期待できる。

- ② 高い構造性能
 内蔵鉄筋が応力を負担するため、大きな外力(地震・
 風)に対して、従来より高い安全性を確保できる。
- ③ 柱の無耐火被覆化 CFT 造に比べて耐火性能に優れ、CFT 造より広範囲にわたって柱を無耐火被覆にすることができる。その結果、 仕上げを大幅に軽減でき、工期を短縮し、建設コストを縮減することができる。また、柱断面寸法をスリム化することができ、広々とした空間を演出できる。

*1 東京本店 建築設計部 *2 大阪本店 建築設計部 *3 技術研究所 建築技術研究部門

2.2 本指針の特色

本指針は基本的に新都市ハウジング協会「コンクリート 充填鋼管(CFT)造技術基準・同解説の運用及び計算例等」 (以下、新都市 CFT 指針)¹⁾に準拠している。本指針と「新 都市 CFT 指針」との比較を表1に示す。「新都市 CFT 指針」 に対する本指針の主な特色は以下の通りである。

柱の曲げ耐力・軸耐力・変形性能評価

・主筋の効果を考慮できる。(CFT-R造のみ)

- ② 柱梁接合部のパネル部せん断耐力評価
 - ・終局耐力は短期許容耐力の1.4倍。 (CFT 造、CFT-R 造とも)
 - ・円形鋼管を用いた場合に、鋼管とコンクリートの 相互拘束効果を考慮できる。(CFT 造、CFT-R 造とも)
 - ・主筋の効果を考慮できる。(CFT-R造のみ)

- ③ 鋼管内面とコンクリートの付着耐力評価
 - ・ダイアフラムに加え、溶接ビード等による支圧抵抗 力も考慮できる。(CFT 造、CFT-R 造とも)

3. 構造実験

CFT 造および CFT-R 造の構造性能を表1に示す本指針設 計式により評価できることを確認する目的で、下記4種類 の構造実験を実施した。

- ① 柱の軸力・曲げせん断実験
- ② 柱梁接合部のパネル部せん断実験
- 3 架構実験
- ④ 柱の押し抜き実験

	百日		本指針		新都市CFT指針
	項日		CFT-R造	CFT造	CFT造
			単純累加 or 一般化累加		単純累加 or 一般化累加
	動力 と 曲 (ギ		N = cN + rN + sN	新都市CFT指針 と同式	N=cN+sN
			M = cM + rM + sM		M=cM+sM
		相互拘束効果	新都市CFT指針と同式	新都市CFT指針と同式	考慮
	하 수 수비7日	許容応力度 に基づく設計	$N \leq \frac{1/3}{c} A \cdot F_c + \frac{2/3}{r} A \cdot f_c}{+ \frac{2}{3} A \cdot f_c}$	新都市CFT指針と同式	$N \leq 1/3_c A \cdot F_c + 2/3_s A \cdot s f_c$
	軸 刀 利 收	終局強度 に基づく設計	$N \leq 0.7 N_o$ $(N_o = {}_c A \cdot F_c + {}_r A \cdot {}_r \sigma_y + {}_s A \cdot {}_s \sigma_y)$	新都市CFT指針と同式	$N \leq 0.7 N_o$ $(N_o = {}_c A \cdot F_c + {}_s A \cdot {}_s \sigma_y)$
柱	せん聞	所耐力	SRC規準と同式 (主筋・帯筋は考慮しない)	SRC規準と同式	SRC規準と同式
			<i>Ru</i> は新都市CFT指針と同式 ただし、 <i>cNo</i> は下式による。		限界部材角Ruは下式により評価
	変形性能	円形鋼管	$cNo = 0.82 _{s}A \cdot_{s} \sigma_{y} + A \cdot_{r} \sigma_{y} + A \cdot_{c} F_{c}$	新都市CFT指針と同式	$R_u = \left(6.0\eta - 3 \cdot \frac{N}{cN_0} - 0.035 \cdot \frac{D}{t} \cdot \frac{s\sigma_y}{325}\right) \cdot \frac{1}{100}$ $cNo = 0.82 {}_sA \cdot {}_s\sigma_y + {}_cA \cdot {}_cF_c$
		角形鋼管	$cNo = {}_{s}A \cdot {}_{s}\sigma_{y} + {}_{r}A \cdot {}_{r}\sigma_{y} + {}_{c}A \cdot {}_{c}F_{c}$		$R_u = \left\{3.25 - 5.0 \left(\frac{N}{N_0}\right) + 800\eta \left(\frac{t}{B}\right)^2 \cdot \sqrt{\frac{325}{s\sigma_y}} \right\} \cdot \frac{1}{100}$ $cNo = {}_sA \cdot {}_s\sigma {}_y + {}_cA \cdot {}_cF_c$
	パネル部 せん断耐力	許容耐力	右式+ 主筋効果	SRC規準と同式 ただし、コンクリート強度に <u>相互拘束効果を考慮</u> <u>(円形鋼管のみ)</u>	SRC規準と同式
柱梁 接合部		終局耐力	右式+ 主筋効果 <u>(許容耐力式の1.4倍)</u>	<u>許容耐力式の1.4倍</u>	許容耐力式の1.2倍
	ダイアフ	ラム耐力	同右	同右 ただし、角形鋼管を用いる場合、 「角形GTT柱梁接合部設計指針 (新都市ハウジング協会)」による	鋼管指針による
鋼管とコンクリートの付着耐力		D付着耐力	同右	下記2項目による ・鋼管とコンクリートの付着 ・機械的突起(ダイアフラム、 溶接ビード等)による支圧	下記2項目による ・鋼管とコンクリートの付着 ・機械的突起(ダイアフラム)による支圧

表1 本指針と「新都市 CFT 指針」との比較

※1 新都市 CFT 指針 :コンクリート充填鋼管 (CFT) 造技術基準・同解説の運用及び計算例等(新都市ハウジング協会)¹⁾

※2 SRC 規準

:鉄骨鉄筋コンクリート構造計算規準・同解説(日本建築学会)² :鋼管構造設計施工指針・同解説(日本建築学会)⁴ ※3 鋼管指針

3.1 柱の軸力・曲げせん断実験

3.1.1 実験概要

表2に試験体および実験結果一覧、写真1に載荷装置を 示す。

CFT-R 柱の曲げ耐力および変形性能を確認する目的で、 試験体総数13体(2000年:4体、2008年:9体)の実験を 実施した。主な実験パラメータは、鋼管形状、主筋の有無、 コンクリート強度、径長比、軸力比とした。なお、表2の 計算値は、材料試験結果を用い、表1に示す本指針設計式 により算定した。また、曲げ耐力計算値は、コンクリート・ 主筋・鋼管の一般化累加強度として算定した。限界部材角 実験値は、荷重-変形曲線の包絡線において、最大水平荷 重を経験した後に最大水平荷重の95%まで耐力低下した時 点の変形とした。

加力方法に関して、2000年は単純梁形式(3点曲げ載荷)、 2008年は建研式とし、いずれの実験も一定軸力下での正負 交番繰り返し漸増載荷とした。

3.1.2 実験結果

図2に2008年実験の材端モーメントー変形角関係を示す。 なお、図中の記号に関して、Mmax は最大モーメント、SCY は鋼管圧縮降伏、STY は鋼管引張降伏、LB は鋼管局部座屈、 RCY は主筋圧縮降伏、RTY は主筋引張降伏を示す。 (1)円形断面試験体

いずれの試験体も繰り返し載荷による耐力低下が少なく、 エネルギー吸収能に富んだ紡錘形の履歴性状を示した。破 壊経過は、変形角 R=1/200rad.で鋼管と主筋の圧縮降伏が ほぼ同時に発生し、R=1/67rad.以降で鋼管の局部座屈が確 認された。

(2)角形断面試験体

角形断面試験体は、円形断面試験体と同様の履歴性状・ 破壊経過を示したが、鋼管降伏が主筋降伏に先行したこと と、局部座屈発生後の耐力低下が著しいことが相違点とし て確認された。

3.1.3 曲げ耐力に関する実験値と計算値の比較

図3に終局曲げ耐力の実験値と計算値の比較を示す。な お、図3には、本実験の実験結果に加え、既往の実験結果

2000年実験(単純梁形式)

2008年実験(建研式)写真1 載荷装置

■2000年実験

表2 試験体および実験結果一覧

			パラメータ					計算値		実験値			
試験体名					径長比	軸力比	終局曲げ モーメント	限界 部材角	最大	最大モーメント		部材角	
			コンクリート	主筋	L_k/D	N/N 0	$_{c}M_{u}$	$_{c}R_{u}$	$_{e}M_{u}$	$_{e}M_{u}/_{c}M_{u}$	$_{e}R_{u}$	$_{e}R_{u}/_{c}R_{u}$	
					L_k/B		$kN \cdot m$	rad.	$kN \cdot m$		rad.		
CR0	比較CFT	円形鋼管 φ355.6×6.4 D/t=56 STK400	Fc60	—		0.0	391	2.75%	440	1.13	2.45%	0.89	
CR1	標準RCFT			8-D19 SD345 pg=2.5%			467	2.70%	503	1.08	3.55%	1.31	
CR2	重ね継手				0.0		468	2.67%	546	1.17	3.05%	1.14	
CR3	高軸力					0.5	599	1.27%	616	1.03	2.40%	1.89	

■2008年実験

		パラメータ					計算値		実験値			
試験体名					径長比	軸力比	終局曲げ モーメント	限界 部材角	最大著	最大モーメント		邸材角
		鋼管	コンクリート	主筋	L_k/D	N/N 0	$_{c}M_{u}$	$_{c}R_{u}$	$_{e}M_{u}$	$_{e}M_{u}/_{c}M_{u}$	$_{e}R_{u}$	$_{e}R_{u}/_{c}R_{u}$
					L_k/B		$kN \cdot m$	rad.	$kN \cdot m$		rad.	
CC0	比較CFT			—	6.0		540	2.10%	577	1.07	2.83%	1.34
CC1	標準RCFT	円形鋼管 φ318.5×7.9 D/t=40 STK490	Fc60	10-D16 SD390 pg=2.8%	0.0	0.4	601	2.04%	655	1.09	3.24%	1.59
CC2	長柱				14.8		243	1.62%	634	2.61	2.85%	1.76
CC3	高軸力				6.0	0.6	592	1.37%	575	0.97	2.20%	1.61
CC4	高強度Con		Fc90			0.4	685	1.01%	697	1.02	3.07%	3.04
CRO	比較CFT	角形鋼管		—	6.0		678	2.14%	712	1.05	2.13%	1.00
CR1	標準RCFT	□300×9 B/t=33 STKR490 (熱処理)	Fe60	10-D16	0.0	0.3	735	2.16%	762	1.04	2.34%	1.08
CR2	長柱		Fc60	SD390 pg=2.5%	15.7		437	2.17%	739	1.69	2.33%	1.07
CR3	高軸力				6.0	0.5	677	1.17%	667	0.99	1.45%	1.24

7~15)もプロットした。

図3より、終局曲げ耐力に関して、実験値は計算値を上 回り、本指針設計式により安全側に評価できることを確認 した。

3.1.4 変形性能に関する実験値と計算値の比較

図4に限界部材角の実験値と計算値の比較を示す。なお、

図4には、本実験の実験結果に加え、既往の実験結果 7~15) もプロットした。

図4 限界部材角の実験値と計算値の比較

□ 既往実験 ◇ 2000年実験 ◎ 2008年実験

Ru (%)

2

1

0

0

□ 既往実験

3 4

限界部材角計算値

● 2008年実験

Ru (%)

図4より、限界部材角に関して、実験値は計算値を上回 り、本指針設計式により安全側に評価できることを確認し た。

2

1

0

0

2 1

限界部材角計算値

3 4

3.2 柱梁接合部のパネル部せん断実験

3.2.1 実験概要

表3に試験体および実験結果一覧、図4に加力模式図、 写真2に載荷装置を示す。

CFT-R 造柱梁接合部のパネル部せん断耐力を確認する目 的で、試験体総数5体の実験を実施した。主な実験パラメ ータは、主筋量、パネル辺長比、接合方式とした。なお、 表3の計算値は、材料試験結果を用い、表1に示す本指針 設計式により算定した。

加力方法は、大野式逆対称モーメント方式による正負交 番繰り返し漸増載荷とした。

3.2.2 実験結果

写真3に最終破壊状況、図5にパネル部のせん断力-変 形角関係を示す。

いずれの試験体も破壊モードはパネル部のせん断破壊で あった。図 5 より、パネル部の変形角γ=1/100rad. ~ 1/50rad. で最大耐力を発揮し、γ=1/10rad. で実験を終了さ せるまで、急激に耐力低下することなく、安定した性状を 示した。

試馴	 餘体No	鋼管	主筋	充填 コンクリート	パネル 辺長比 [※]	接合方式	備考
N01	CFT		-		1.0	外ダイア	CFT
N02		円形鋼管	10-D16		1.0	外ダイア	基本
N03		φ 318.5 ×7.9 D/t=40 STKN490B	SD390 pg=2.8%	Fc60	1.6	外ダイア	パネル辺長比
N04	CFT-R				1.0	通しダイア	接合形式
NO5			16-D16 SD390 pg=4.8%		1.0	外外イア	主筋上限

表3 試験体および実験結果一覧

※辺長比=パネル高さ-鋼管径、パネル高さ:実験では下の加力模式図のsBd

	実馬	険値	設計式に。	トる計算値	実験値と		
=+* 昨会 / ★ No	降伏	最大	短期 終局		計算値の比較		
ill 洞央 平 NU	eQy	e Q u	$_{c}Q_{y}$	_c Q _u	0/0	0/0	
	kN	kN	kN	kN	$e \mathcal{Q} y' c \mathcal{Q} y$	eQu′cQu	
N01	2028	2583	1668	2335	1.22	1.11	
N02	2216	2635	1766	2473	1.26	1.07	
N03	1922	2331	1539	2155	1.25	1.08	
NO4	2266	2707	1768	2475	1.28	1.09	
N05	2296	2727	1829	2560	1.26	1.07	

図4 加力模式図

写真2 載荷装置

最終破壞状況(N02)

3.2.3 パネル部せん断耐力に及ぼす主筋効果

図 6 にパネル部せん断耐力に及ぼす主筋効果を示す。図 6 では、CFT 試験体の NO1 と CFT-R 試験体の NO2 および NO5 の差分 △Q を主筋効果としている。

図 6 より、主筋比に比例して、主筋効果∠Q は大きくな る。また、主筋効果∠Q は、rA×rfs/3 (rA:主筋断面積、

図8 最大耐力実験値と終局せん断耐力計算値の比較

		柱				主筋 (SD390)		溶接組み立てH形鋼梁 (SM490)			
試験体		外径	板厚			主筋比	梁せい	フランジ幅	ウェブ厚	フランジ厚	
	形状	D	t	鋼種	配筋	p _g	Н	В	t_{I}	t_2	
		mm	mm			%	mm	mm	mm	mm	
NO1	円形	318.5	7.9	STKN490B	10-D16	2.77	400	150	9	19	
NO2	角形	300	9	STKR490	10-D16	2.51	400	150	9	28	

表 4 試験体一覧

rfs:主筋の許容短期せん断応力度)の値とよく対応してお り、降伏荷重時と最大荷重時で同程度である。本指針では 安全側の措置として、主筋効果として累加するせん断耐力 を終局時ではrA×rfs/4、短期では終局時の1/1.4とした。

3.2.3 パネル部せん断耐力に関する

実験値と計算値の比較

図7に降伏耐力実験値と短期許容せん断耐力計算値の比 較、図8に最大耐力実験値と終局せん断耐力計算値の比較 を示す。なお、降伏耐力実験値は、接線剛性が初期剛性の 1/3になった時点の荷重とした。また、図7および図8に は「3.3 架構実験」の結果もプロットした。

図7および図8より、CFT-R造柱梁接合部のせん断耐力 に関して、実験値は計算値を上回り、本指針設計式により 安全側に評価できることを確認した。

3.3 架構実験

3.3.1 実験概要

表4に試験体一覧、表5に各部材の耐力比、写真4に載 荷装置を示す。

CFT-R 造柱梁接合部のせん断耐力および変形性状を確認 する目的で、試験体総数2体の十字形架構実験を実施した。 N01 は円形 CFT-R 柱に外ダイアフラム形式、N02 は角形 CFT-R 柱に通しダイアフラム形式で梁を接続した。なお、 表5の計算値は、材料試験結果を用い、表1に示す本指針 設計式により算定した。

加力は、柱に一定軸力(軸力比 0.3)を与え、左右の梁 端に逆対称の正負交番漸増荷重を作用させた。

3.3.2 実験結果および考察

写真5に最終破壊状況、図9にパネル部のせん断力-変 形角関係、表6に実験値と計算値の比較を示す。

図9より、いずれの試験体も変形角 θ =1/100rad.程度で 最大耐力をむかえ、エネルギー吸収に富んだ紡錘形の履歴 性状を示した。また、パネル部の変形は全体変形の 50%以 上を占めていた。表6より、いずれの試験体も実験値が計 算値を上回り、本指針設計式によりパネル部のせん断耐力 を安全側に評価できることを確認した。

表5 各部材の耐力比

	<u>cPpy</u> cPby	<u>cPcy</u> cPby	<u>cPly</u> cPby	<u>cPpu</u> cPbp	<u>cPcu</u> cPbp	<u>cPlu</u> cPbp
N01	0.87	0.71	1.22	1.02	1.16	1.52
N02	0.81	0.83	0.99	0.94	1.24	1.53

cPby:梁の降伏耐力、cPbp:梁の全塑性耐力

cPpy:パネルの短期許容耐力、cPpu:パネルの終局耐力

cPcy:柱の短期許容耐力、cPcu:柱の終局耐力

cPly:ダイアフラムの短期許容耐力、cPlu:ダイアフラムの終局耐力

写真4 載荷装置

写真5 最終破壞状況

図9 パネル部のせん断力-変形角関係

表6 実験値と計算値の比較

	実懸	剣値	設計式に。	よる計算値	実験値と計算値の		
	降伏 最大		短期 終局		比較		
	eQy eQu		cQpy cQpu		<u>eQy</u>	<u>eQu</u>	
	kN	kN	kN	kN	сQpy	сQри	
NO1	2081	2561	1641	2298	1.27	1.11	
N02	2173	3076	1935	2708	1.12	1.14	

cQpy:パネルの短期許容耐力、cQpu:パネルの終局耐力

-40 -

3.4 押し抜き実験

3.4.1 実験概要

写真6に溶接ビード、表7に試験体および実験結果一覧、 図10に加力方法を示す。

写真6に示す溶接ビードを鋼管内に必要に応じて設置し、 溶接ビードの支圧抵抗により鋼管と充填コンクリートの付 着耐力を高めることを考えた。そこで、ビード本数を主な パラメータとし、鋼管と充填コンクリートの付着耐力を確 認する目的で、試験体総数5体の押し抜き実験を行った。

3.4.2 実験結果および考察

図11に荷重-変形曲線と計算値との関係、図12に降伏 荷重実験値と短期付着耐力計算値との比較を示す。なお、 図 12 には本実験の他に、既往の実験結果¹⁶⁾もプロットし ている。また、図 11 および図 12 の計算値は、本指針に従 い、下式により算定した。

$\Delta_{c+r}N = \Delta$	$\Delta N_{\ \mathrm{ff} lpha} + \Delta N_{\ \mathrm{zec}}$
ここで、	
$\Delta_{c+r}N$: 鋼管とコンクリートの付着耐力
$\Delta N_{\text{d} \pm}$: $\Delta N_{\text{ff}} = A_{\text{ff}} \times f_a$
$\Delta N_{\Xi E}$: $\Delta N_{\pm \pm} = A_{\pm \pm} \times_c \sigma_b \times_c \alpha$
$A_{ m free}$: 付着面積
sfa	: 鋼管とコンクリートの許容付着応力度
$A_{\overline{\Sigma E}}$: ビードの水平投影面積×ビード本数
$_{c}\sigma_{b}$: コンクリート圧縮強度
cα	:支圧係数(長期1.0、短期2.0、終局3.0)

最終破壊モードは、いずれの試験体も溶接ビードによる コンクリートの支圧破壊であった。降伏荷重および最大荷 重はビード本数が多いほど高く、径厚比が小さいほど高い ことが確認された。図11より、長期付着耐力計算値は概ね 初期剛性の範囲内にある。また、最大荷重実験値は終局付 着耐力計算値を上回っている。実験値と長期・終局時の付 着耐力計算値との対応に関して、他の試験体においても同 様の傾向が確認された。また、図12より、降伏荷重実験値 は短期付着耐力計算値を上回っていた。したがって、溶接 ビードの支圧抵抗を考慮した鋼管とコンクリートの付着耐 力に関して、本指針設計式により安全側に評価できること を確認した。

	表	7	試験体お	よび	『実験	結果-	·覧
--	---	---	------	----	-----	-----	----

			鋼管		ц	降伏荷重	
≕☆☆	1279 1	径 板厚 径厚比		径厚比	L	実験値	
百八尚史 1 平	F _c	D	t	D/t	本数	ピッチ	$_{e}P_{y}$
	(N/mm^2)	(mm)	(mm)		(本)	(mm)	(kN)
C40N1	60	508	12. 7	40	1	—	1534
C40N2					2	508	2699
C40N3					3	254	3495
C40N4					4	169.3	4421
C27N2		508	19	26.7	2	508	3647

載荷治具 φ600×100

載荷盤 φ473×100

載荷治具 φ560×70

錮管

断面マクロ写真

溶接状況 写真6 溶接ビード

 $\neg \neg$

充填 コンクリート

1048

図 10 加力方法

図11 荷重-変形曲線と計算値との関係

図 12 降伏荷重実験値と短期付着耐力計算値との比較

4. まとめ

本指針は、基本的に「新都市 CFT 指針」に準拠し、策定 した。そして、「新都市 CFT 指針」に対して、下記の高度化 技術を新たに策定する目的で構造実験を実施した。

①柱の曲げ耐力・軸耐力・変形性能評価

- 主筋の効果を考慮できる。(CFT-R 造のみ)
 ②柱梁接合部のパネル部せん断耐力評価
 - 終局耐力は短期許容耐力の1.4倍 (CFT 造、CFT-R 造とも)
 - 円形鋼管を用いた場合に、鋼管とコンクリートの 相互拘束効果を考慮できる。
 - (CFT 造、CFT-R 造とも)

・ 主筋の効果を考慮できる。(CFT-R 造のみ)

- ③鋼管内面とコンクリートの付着耐力評価
 - ダイアフラムに加え、溶接ビード等による支圧抵 抗力も考慮できる。(CFT 造、CFT-R 造とも)

構造実験を実施した結果、新たに策定した本指針設計式 の妥当性を確認・実証することができた。

参考文献

- 新都市ハウジング協会:コンクリート充填鋼管(CFT)造技 術基準・同解説の運用及び計算例等、2005.7
- 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説、 2001.1
- 日本建築学会:コンクリート充填鋼管構造設計施工指針、 1997.10
- 4) 日本建築学会:鋼管構造設計施工指針・同解説、
- 5) 鴻池組: 鴻池鋼管コンクリート構造(日本建築センター 一般評定取得 BCJ-S1351 建築基準法 旧 38 条 大臣認定 平成4年10月27日建設省阪住指発第194号)
- 6) 住友金属工業:円形鋼管コンクリート柱構造 コンクリート 充填 ST コラム(日本建築センター 一般評定取得 BCJ-S1453 建築基準法 旧38条 大臣認定 平成6年3月 15日建設省阪住指発第58号)
- 7) 鴻池組、住友金属工業:RCFT 柱のビームコラム実験報告書、 2000.6
- 川端一三、浅山長生、成原弘之、小室努、今井和正:鋼管で 囲んだ高強度鉄筋コンクリート柱(RCFT 構造)の開発(その
 1 柱部材の構造実験)、日本建築学会大会学術講演梗概集、 pp. 1209-1210、2000.9

- 9) 今井和正、川端一三、浅山長生、小室努、成原弘之:鋼管で 囲んだ高強度鉄筋コンクリート柱(RCFT構造)の開発(その
 3 角形柱の構造実験)、日本建築学会大会学術講演梗概集、 pp.1153-1154、2001.9
- 10) 荒井豊人、羽鳥敏明、菊田繁美、石川勝美、岩下静司、桑素 彦:鉄筋内臓鋼管コンクリート構造に関する実験的研究(その2 柱の曲げせん断実験概要)、日本建築学会大会学術講演 梗概集、pp.1201-1202、2003.9
- 中山信雄、武藤肇、平出亨、金子洋文:鉄筋を内蔵する円形
 CFTの力学性状-その1 実験結果ならびに評価式の提案-、
 日本建築学会大会学術講演梗概集、pp.1131-1132、2005.9
- 12) 武藤肇、中山信雄、平出亨、金子洋文:鉄筋を内蔵する円形
 CFT の力学性状-その 2 提案された耐力・限界部材角算定
 式の検証-、日本建築学会大会学術講演梗概集、
 pp. 1133-1134、2005.9
- 13) 武藤肇、中山信雄、平出亨、金子洋文:鉄筋を内蔵する円形
 CFTの力学性状-その3 径厚比の大きい CFT 造柱の実験結
 果-、日本建築学会大会学術講演梗概集、pp.1063-1064、
 2006.9
- 14) 岩岡信一、岡村喜吉、堀伸輔、古宮嘉之、能瀬泰延:鉄筋を 挿入した角形 CFT 柱部材の曲げせん断実験-その1 実験概 要-、日本建築学会大会学術講演梗概集、pp.1173-1174、 2007.8
- 15) 堀伸輔、岡村喜吉、岩岡信一、古宮嘉之、能瀬泰延:鉄筋を 挿入した角形 CFT 柱部材の曲げせん断実験-その2 実験結 果と耐力評価-、日本建築学会大会学術講演梗概集、 pp.1175-1176、2007.8
- 16) 高木潤一、中村信行、廣田実、宮尾俊明、猪砂利次、杉山武 彦:内面に溶接ビードを設けたコンクリート充填鋼管柱の付 着性状に関する実験的研究、日本建築学会大会学術講演梗概 集、pp.889-890、1997.9

謝辞

CFT 造および CFT-R 造の開発は住友金属工業㈱と共同で実施し てきた。関係者各位に感謝の意を表します。特に、この度の一般 評定取得に際し、住友金属工業㈱の一戸氏と福田氏には多大な協 力をいただきました。ここに御礼申し上げます。

※「CFTR」は㈱鴻池組・住友金属工業㈱の登録商標です。